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Abstract. An experiment on the radiative π+-meson photoproduction from the proton (γp → γπ+n)
was carried out at the Mainz Microtron MAMI in the kinematic region 537MeV < Eγ < 817MeV,
140◦ ≤ θcm

γγ′
≤ 180◦. The π+-meson polarizabilities have been determined from a comparison of the data

with the predictions of two different theoretical models, the first one being based on an effective pole
model with pseudoscalar coupling while the second one is based on diagrams describing both resonant
and nonresonant contributions. The validity of the models has been verified by comparing the predictions
with the present experimental data in the kinematic region where the pion polarizability contribution
is negligible (s1 < 5m2

π) and where the difference between the predictions of the two models does not
exceed 3%. In the region, where the pion polarizability contribution is substantial (5 < s1/m

2
π < 15,

−12 < t/m2
π < −2), the difference (α− β)π+ of the electric (α) and the magnetic (β) polarizabilities has

been determined. As a result we find (α−β)π+ = (11.6± 1.5stat± 3.0syst± 0.5mod)× 10−4 fm3. This result
is at variance with recent calculations in the framework of chiral perturbation theory.

PACS. 12.38.Qk Experimental tests – 13.40.-f Electromagnetic processes and properties – 13.60.Le Meson
production

1 Introduction

The pion polarizabilities characterize the deformation of
the pion in an external electromagnetic field. The values of
the electric (α) and magnetic (β) polarizabilities depend
on the rigidity of the composite particle and provide im-
portant information of the internal structure. Very differ-
ent values for the pion polarizabilities have been predicted
in the past. All predictions agree, however, that the sum
of the two polarizabilities of the π±-meson is very small.
On the other hand, the value of the difference of the polar-
izabilities is very sensitive to the theoretical models. The

a e-mail: filkov@sci.lebedev.ru

investigations within the framework of chiral perturbation
theory (ChPT) predict (α − β)π± ≈ 5.4 [1,2] at one-loop
and 4.4 ± 1.0 at two-loop order [3]. Note that here and
in the following the polarizabilities are given in units of
10−4 fm3. The calculation in the extended Nambu-Jona-
Lasino model with a linear realization of chiral U(3)×U(3)
symmetry [4] results in απ± = −βπ± = 3.0 ± 0.6. The
application of dispersion sum rules (DSR) at a fixed
value of the Mandelstam variable u = m2

π [5,6] leads to
(α−β)π± = 10.3±1.9 and (α−β)π0 = −3.01±2.06. DSR
at finite energy [7] gave a similar result for the charged
pion ((α − β)π± = 10.6) and a smaller value with large
uncertainties for the neutral pion, (α− β)π0 = 0.3± 5. A
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Table 1. The experimental data presently available for the pion polarizabilities.

Experiments απ±/10
−4 fm3 απ0/10−4 fm3

π−Z → γπ−Z, Serpukhov (1983) [10] 6.8± 1.4± 1.2

γp→ γπ+n, Lebedev Phys. Inst. (1984) [11] 20± 12
D. Babusci et al. (1992) [12]
γγ → π+π−: PLUTO (1984) [13] 19.1± 4.8± 5.7

DM 1 (1986) [14] 17.2± 4.6
DM 2 (1986) [15] 26.3± 7.4
MAPK II (1990) [16] 2.2± 1.6

γγ → π0π0: Crystal Ball (1990) [17] ±0.69± 0.11
F. Donoghue, B. Holstein (1993) [18]
γγ → π+π−: MARK II 2.7
γγ → π0π0: Crystal Ball −0.5

(α+ β)π0/10−4 fm3 (α− β)π0/10−4 fm3

A. Kaloshin, V. Serebryakov (1994) [19]
γγ → π0π0: Crystal Ball 1.00± 0.05 −0.6± 1.8
L. Fil’kov, V. Kashevarov (1999) [6]
γγ → π0π0: Crystal Ball 0.98± 0.03 −1.6± 2.2

calculation using the linear σ model with quarks and vec-
tor mesons to one loop order predicts (α− β)π± = 20 [8],
and the Dubna quark confinement model [9] results in
(α− β)π± = 7.05 and (α− β)π0 = 1.05.

The experimental information available so far for the
polarizability of the pion is summarized in table 1. The
scattering of high energy pions off the Coulomb field of
heavy nuclei [10] resulted in απ− = −βπ− = 6.8±1.4±1.2
assuming (α + β)π− = 0. This value agrees with the pre-
diction of DSR but is about 2.5 times larger than the
ChPT result. The experiment of the Lebedev Institute on
radiative pion photoproduction from the proton [11] has
given απ+ = 20± 12. This value has large error bars and
shows the largest discrepancy with regard to the ChPT
predictions. The attempts to determine the polarizability
from the reaction γγ → ππ suffer greatly from theoreti-
cal [20] and experimental [21] uncertainties. The analysis
of MARK II and Crystal Ball data in ref. [18] finds no ev-
idence for a violation of the ChPT predictions. However,
even changes of polarizabilities by 100% and more are still
compatible with the present error bars. As seen from ta-
ble 1, our present experimental knowledge about the pion
polarizability is still quite unsatisfactory.

The present work is devoted to the investigation of
the radiative π+-meson photoproduction from the proton
with the aim to determine the π+-meson polarizability.
The experiment on this process has been carried out at
the Mainz Microtron MAMI.

The content of this paper is as follows. The connection
of pion polarizability with Compton scattering on the pion
and radiative photoproduction of the π+-meson and cal-
culations of the cross-section for this process are given in
sect. 2. The experimental setup is described in sect. 3. The
analysis of the experimental data and the determination of
the π+-meson polarizability are given in sect. 4. The dis-
cussion of the results obtained is in sect. 5. Conclusions
are presented in sect. 6. The details of the calculations of
baryon resonances and the description of the orthogonal
amplitudes method are given in appendices A, B, and C.

2 Radiative pion photoproduction from the
proton and the pion polarizability (theory)

2.1 Compton scattering on the pion and pion
polarizabilities

Expanding the Compton scattering amplitude on the pion
with respect to the photon energy and taking account of
terms up to second order, we have [22–24]

Tγπ→γπ = TB + 8πmπω1ω2

×[~ε2 · ~ε1απ + (~κ2 × ~ε2) · (~κ1 × ~ε1)βπ] + · · · , (1)

where ~ε1(~ε2), ω1(ω2) and ~κ1(~κ2) are the polarization vec-
tor, the energy and the direction of the initial (final) pho-
ton, respectively, mπ is the π±-meson mass, and TB is the
Born amplitude. The low-energy expansion for the helicity
amplitudes M++ and M+− can be written as [25]

M++ = M
(B)
++ + 2πmπ(α− β)π± ,

M+− = M
(B)
+− +

2π

mπ
(α+ β)π± . (2)

The low-energy expressions for the differential and to-
tal cross-sections for Compton scattering on charged pions
take the form [25,26]

dσγπ
dΩ

=

(

dσγπ
dΩ

)

B

− e2

4π

m3
π(s1 −m2

π)
2

4s21[(s1 +m2
π) + (s1 −m2

π)z]

×
{

(1−z)2(απ±−βπ±)+
s21
m4
π

(1+z)2(απ±+βπ±)

}

,

(3)
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, (4)

where z = cos θcm
γγ′ , the index B indicates the Born cross-

sections and s1 is the square of the total energy in the
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center-of-mass system (c.m.s.) for the γπ → γπ reaction
(see eq. (8)).

The differential Born cross-sections is given by

(

dσγπ
dΩ

)

B

=
1

2

(

e2

4π

)2
1

s1

×
[

1 +

(

(s1 −m2
π) + (s1 +m2

π)z

(s1 +m2
π) + (s1 −m2

π)z

)2
]

. (5)

We work at values of s1 up to 15m2
π. It has been shown

in ref. [6] that the contributions of the scalar-isoscalar two-
pion correlations (σ-meson) are noticeable at such high
values of s1. On the other hand, the contribution of other
mesonic resonances (ρ, a1, b1, a2) is negligible in this re-
gion. The σ-meson was considered in ref. [6] as an effective
description of the strong S-wave ππ interaction using the
broad Breit-Wigner resonance expression.

Therefore, we will take account of the σ-meson by us-
ing the dispersion relation from [6]

M++ = M
(B)
++ + 2πmπ(α− β)π±

+
t1
π
P

∫ ∞

4m2
π

ImMσ
++(t

′
1)dt

′
1

t′1(t
′
1 − t1)

, (6)

where

ImMσ
++(t1) =

gσΓ

(M2
σ − t1)2 + Γ 2

,

gσ = 8π
Mσ +

√
t1√

t1

( 2
3ΓσΓσ→γγ

Mσ

√

M2
σ − 4m2

π

)
1
2

,

Γ =
Γσ
2
(
√
t1 +Mσ)

(

t1 − 4m2
π

M2
σ − 4m2

π

)
1
2

,

and t1 is the momentum transfer of the process γπ → γπ.
The parameters of the σ-meson have been determined

in [6] from a fit of the experimental data for the process
γγ → π0π0:

Mσ = 547± 45MeV, Γσ = 1204± 362MeV,

Γσ→γγ = 0.62± 0.19 keV. (7)

2.2 Kinematics of radiative π+-meson
photoproduction from the proton

Radiative pion photoproduction from the proton is de-
scribed by five independent kinematical invariants, which
are expressed in the laboratory system:

s = (p1 + k1)
2 = m2

p + 2mpEγ ,

t = (p2 − p1)
2 = (mn −mp)

2 − 2mp(En −mn),

t1 = (k2 − k1)
2 = −2EγEγ′(1− cos θγγ′), (8)

s1 = (k2 + q2)
2 = m2

π + 2Eγ′(q20 − |~q2| cos θγ′π+),

s2 = (p2 + q2)
2 = s+ t1 − 2mpEγ′ ,

k
1

p
1

k
2

q
2

p
2

Fig. 1. The diagram for the radiative pion photoproduction
from the proton.

where Eγ and Eγ′ are the energies of the initial and final
photons, respectively,mn is the mass and En is the energy
of the neutron, q20 and ~q2 are the energy and the momen-
tum of the pion, and mp is the proton mass (see fig. 1).

The variable s2 can be expressed in terms of the so-
called Treiman-Yang angle ϕb as [27]

s2 = s− 1

(s1 − t)2

{

2
√

F1F2 cosϕb + (s1 − t)

×
[(

s1 −m2
π

)(

s−m2
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)

− t1
(
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n + s1
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(
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}

, (9)

where

F1 = t1
[

s1t1 +
(

s1 −m2
π
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]

, (10)
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s
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n − s1 + t
)

+m2
p

(

m2
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+ s1
[

s1m
2
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(

s−m2
p

)(

m2
n −m2

p

)]

(11)

and

cosϕb =
(~k1 × ~p1) · (~k1 × ~q2)

|~k1 × ~p1||~k1 × ~q2|
. (12)

The Treiman-Yang angle ϕb is defined as the angle be-

tween the planes formed by the momenta ~k1, ~p1 and ~k1,
~q2 in the c.m.s. of the γπ scattering. The conditions F1 ≤ 0
and F2 ≤ 0 determine the physical region of the process
under investigation.

The pion polarizability can be extracted from exper-
imental data on radiative pion photoproduction, either
by extrapolating these data to the pion pole [26,28–30],
or by comparing the experimental cross-section with the
predictions of different theoretical models. The extrapo-
lation method was first suggested in [31] and has been
widely used for the determination of cross-sections and
phase shifts of elastic ππ-scattering from the reaction
πN → ππN . For investigations of γπ+-scattering this
method was first used in [11,32].

However, in order to obtain a reliable value of the pion
polarizability, it is necessary to obtain the experimental
data on pion radiative photoproduction with small errors
over a sufficiently wide region of t, in particular, very close
to t = 0 [33–35].

It should be noted that there is an essential difference
in extrapolating the data of the processes πN → ππN and
γp → γπN . In the former case, the pion pole amplitude
gives the main contribution in a certain energy region.
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Fig. 2. The nucleon and pion pole diagrams in the model with pseudoscalar coupling.

This permits to constrain the extrapolation function to
be zero at t = 0 providing a precise determination of the
amplitude. In the case of radiative pion photoproduction,
the pion pole amplitude alone is not gauge invariant and
we must take into account all pion and nucleon pole am-
plitudes. However, the sum of these amplitudes does not
vanish at t = 0. This complicates the extrapolation pro-
cedure by increasing the requirements on the accuracy of
the experimental data.

As the accuracy of the present data is not sufficient
for a reliable extrapolation, the values of the pion polariz-
abilities have been obtained from a fit of the cross-section
calculated by different theoretical models to the data.

2.3 Calculations of the cross-section for the reaction
γp → γπ

+n

The theoretical calculations of the cross-section for the re-
action γp→ γπ+n show that the contribution of nucleon
resonances is suppressed for photons scattered backward
in the c.m.s. of the reaction γπ → γπ. Moreover, inte-
gration over ϕ and θcm

γγ′ essentially decreases the contri-
bution of resonances from the crossed channels. On the
other hand, the difference (α − β)π+ gives the biggest
contribution to the cross-section for θcm

γγ′ in the region of
140◦ − 180◦. Therefore, we will consider the cross-section
of radiative pion photoproduction integrated over ϕ from
0◦ to 360◦ and over θcm

γγ′ from 140◦ to 180◦,

∫ 360◦

0

dϕ

∫ −0.766

−1

d cos θcm
γγ′

dσγp→γπ+n

dtds1 dΩγγ
, (13)

where the angle ϕ is equal to the angle ϕb in (12).

(a) (b) (c)
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k
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2

p
2

p
q

(f)

Fig. 3. The nucleon and pion pole diagrams as well nucleon
resonance contributions to radiative π+ photoproduction from
the proton.

The cross section of the process γp→ γπ+n has been
calculated in the framework of two different models. In
the first model (model-1) the contribution of all the pion
and nucleon pole diagrams is taken into account using
pseudoscalar pion-nucleon coupling (fig. 2) [35].

In the second model (model-2), we include the nu-
cleon and the pion pole diagrams without the anomalous
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magnetic moments of the nucleons (fig. 3a-e), and in
addition the contributions of the resonances ∆(1232),
P11(1440), D13(1520), and S11(1535) according to fig. 3f.
The amplitude of the γπ+ elastic scattering in this model
is described by eq. (6). We will determine the pion polar-
izability by comparing the experimental data with predic-
tions of these theoretical models in different regions of s1.
Therefore, we limited ourselves to describing the baryon
resonances by the diagram fig. 3f only, because this dia-
gram has a pole at s1 = m2

π. The details of the calculations
of these resonance contributions are given in the appen-
dices.

It should be noted that the contribution of the sum
of the pion polarizabilities is very small in the considered
region of 140◦ . θcm

γγ′ . 180◦. The estimate shows that the

contribution of (α+ β)π± = 0.4 to the value of (α− β)π±
is less than 1%.

3 Experimental setup

The experiment has been performed at the continuous-
wave electron accelerator MAMI B [36,37] using Glasgow-
Mainz photon tagging facility [38,39]. The quasi-
monochromatic photon beam covered an energy range
from 537 to 819MeV with an intensity ∼ 0.6× 106γ/s in
the tagger channel with a 2.3MeV wide bite for the lowest
photon energy. The average energy resolution was 2MeV.
The tagged photons entered a scattering chamber, con-
taining a 3 cm diameter and 11.4 cm long liquid-hydrogen
target with Kapton windows. The target was aligned along
the photon beam direction. The emitted photon γ ′, the
π+-meson, and the neutron were detected in coincidence.
The experimental setup is shown in fig. 4.

The photons were detected by the spectrometer
TAPS [40,41], assembled in a special configuration (fig. 5).
The TAPS spectrometer consists of 528 BaF2 crystals,
each 250mm long (corresponding to 12 radiation lengths)
and hexagonally shaped with an inner diameter of 59mm.
All crystals were arranged into three blocks. Two blocks
(A,B) consisted of 192 crystals arranged in 11 columns
and the third block (C) had 144 crystals arranged in 11
columns. These three blocks were located in the horizon-
tal plane around the target at central angles 68◦, 124◦,
180◦ with respect to the beam axis. Their distances to the
target center were 55 cm, 50 cm and 55 cm, respectively.
All BaF2 modules were equipped with 5mm thick plastic
veto detectors for the identification of charged particles.

The neutrons were detected by a wide aperture
time-of-flight spectrometer (TOF) [42]. It consisted of
111 scintillation-detector bars of dimensions 50 × 200 ×
3000mm3 and 16 counters (10 × 230 × 3000mm3) which
were used as charged-particles veto detectors. The bars
are made from NE110 plastic scintillator and each bar is
read out at each end by a 3′′ phototube type XP2312B.
All bars were assembled in planes 8 deep, each plane hav-
ing 16 detectors (fig. 4). This block of plastic scintillators
and detected neutrons in the energy region 10–100MeV
with efficiencies varying between 30 to 50% depending on

1 m

AB

C
LH2

MWPC + FSD

TOF

γ -beam

Fig. 4. Floor plan of the experimental setup showing the loca-
tion of the detectors. A, B, C are TAPS blocks, MWPC+FSD
show multi-wire proportional chambers and the forward scin-
tillation detector, TOF indicates the block of the neutron de-
tector bars, and LH2 stands for the liquid-hydrogen target in
its vacuum scattering chamber.

A

B

C

LH
2

MWPC+FSD

Fig. 5. Enlarged view showing the details of the TAPS con-
figuration.

energy. The neutron energy determination was by time
of flight and for the present energy range and path the
FWHM resolution was ∼ 10%. Accuracy of the horizontal
position of TOF was ±10 cm and the FWHM resolution
of its vertical position was 29 cm [43].

In order to detect the π+-meson two two-coordinate
multi-wire proportional chambers (MWPC) and a for-
ward scintillator detector (FSD) have been developed and
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Table 2. Test run results for counting rates measurements of each MWPC plane at 8mm collimator, 3.25 kV MWPC high
voltage and for a tagged interval of 520–795MeV.

MWPC BEAM MWPC1 MWPC2 Singl Max. FSD Max.
plane current current current plane wire rate strip
number (nA) (µA) (µA) rate rate (MHz) rate

(MHz) (MHz) (MHz)
1 155.4 75.0 73.0 7.78 0.159 9.59 1.44
2 155.4 75.0 73.0 6.09 0.137 9.53 1.41
3 158.7 76.0 74.0 6.35 0.176 9.64 1.42
4 155.6 75.0 73.0 7.63 0.199 9.44 1.40

Fig. 6. The arrangement of the planes of the multi-wire pro-
portional chambers.

constructed (fig. 6), which provided a fast trigger signal.
The MWPCs were located at 0◦ with respect to the beam
direction. Their sensitive areas covered angles in the lab-
oratory system θ ∼= 2◦–20◦, ϕ ∼= 0◦–360◦. The MWPCs
have the following characteristics:

– sensitive region: 292× 292mm2,
– photon-beam aperture: 40× 40mm2,
– anode wires: gold-plated tungsten 20µm,
– distance between wires: 2mm,
– cathode planes: 25µm aluminum foil,
– gas windows: 50µm mylar foil,
– anode-cathode gap: 5mm,
– maximum current for all wires: 100µA.

Each MWPC has two perpendicular planes each with 128
wires.

The MWPCs operated with a gas mixture of argon
(60%) and isobutane (30%). The gas mixture was blown
through the chambers at a flow rate of 180ml/min. MW-
PCs were read by LeCroy 2735DC cards. The FSD had
16, 1×2×30 cm3 plastic scintillator strips with a 4×4 cm2

hole in the middle for the photon beam. Each strip was
read out by a single photomultiplier tube.

The MWPCs were optimized for high count rates and
good efficiency, described as follows. The measurement of
the efficiency was carried out with a 90Sr beta source.
The MWPC was placed between two 190 × 20 × 5mm3

plastic scintillators. This detector arrangement was irra-
diated by a radioactive source, viewed through a two mil-
limeter collimator. Thresholds of the discriminators for
the plastic detectors were fixed at 30mV. Double coinci-
dence rates between the plastic detectors and triple coin-
cidences which included the MWPC were measured simul-
taneously at different thresholds of the LeCroy 2735DC
cards, for different values of the MWPC high voltage. A
high voltage for MWPC of 3.25 kV with 3V threshold for
the LeCroy 2735DC cards was chosen where the maximum
efficiency was about 98% and the noise was suppressed.

In order to optimize the MWPC and FSD for high
counting rates, a test measurement was carried out with
untagged bremsstrahlung produced at the tagger radiator
(Ee = 855MeV). The first MWPC was positioned at a dis-
tance of 131 cm from the end of the vacuum beam pipe. A
mylar target of 3mm thickness was placed at a distance
of 45 cm from the foil covering the first chamber. Thresh-
olds of the FSD discriminators were set to 500 ± 50 keV
on the basis of the Compton electron response to 60Co
γ-rays. The test run results are presented in table 2. We
found that at the maximum intensity in the tagging sys-
tem (beam current ∼ 150 nA) the current of the MWPC
was 76µA, well within operational limits.

In the experiment on the radiative pion photoproduc-
tion the first MWPC was centered at a polar angle of
0◦ with respect to the beam axis, and at a distance of
46 cm from the center of the target to the first wire plane.
The second MWPC was placed ∼ 10 cm behind the first
one and was rotated 45◦ in azimuth with the respect to
the front chamber. The FSD was positioned between the
first and second MWPCs. After the commissioning of this
experiment in the A2 Tagger Hall at Mainz, triple coin-
cidence of γ, π+, and n were taken over a period of 1150
hours.

4 Determination of the π+-meson
polarizability

4.1 Analysis of the experimental data

In order to determine an efficiency of the γ and π+ de-
tectors and to check the normalization of the experimen-
tal data, π0-meson photoproduction from the proton has
been measured and the obtained cross-section was com-
pared with the well-known values [44].
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Neutral pions produced in the liquid-hydrogen target
were detected via their two-photon decay with the TAPS
spectrometer. The MWPC and FSD were used to detect
the protons, triggered by a coincidence between TAPS and
FSD. About 2.5 × 106 raw events were collected and af-
ter kinematic selection ∼ 5 × 105 events remained. The
background of multiple pion production was removed by
reconstructing the missing-mass spectrum for the reaction
γp→ π0X. Random coincidences were subtracted by sam-
ples selected outside the prompt coincidence time window
with the photon tagger.

The cross-section was obtained using the detector
yields, the detection efficiency of each detector arm, the
thickness of the liquid-hydrogen target, and the inten-
sity of the photon beam. The photon intensity was deter-
mined by counting the electrons detected in the tagging
spectrometer focal plane detector. The tagging efficiency,
i.e. the probability of a bremsstrahlung photon passing
through the collimator giving an e− hit in the focal plane,
was determined by comparing the number of electrons de-
tected in the tagger to the number of photons detected in
a 100% efficient lead glass detector, which was moved into
the photon beam during special runs at very low beam
intensity. The angle- and energy-dependent detection ef-
ficiency of TAPS and FSD+MWPC was calculated by
Monte Carlo using GEANT3 [45], in which all relevant
properties of the setup are taken into account. As a result
we obtained experimental data for the process γp → π0p
for the angles 140◦, 150◦, 160◦, and 170◦ in the energy
region 290–810MeV.

The angular distribution data in the energy region
480–530MeV are shown in fig. 7. The filled circles are
the data of the present work. The open circles are the
data obtained in [44]. The results of the theoretical mod-
els MAID and DMT are depicted by the solid and dashed
curves, respectively. The dotted lines are the results of the
partial-wave analysis SAID of the world data.

The present angular distributions are in a good agree-
ment with those of ref. [44] and with the predictions of
MAID, DMT and SAID for incoming photon energy up
to ∼ 650MeV. This result shows that the efficiencies of
the γ and π+-meson detectors correspond well to the sim-
ulation result.

To determine the efficiency of the TOF detector,
GEANT was improved by the STANTON program pack-
age [46], which allowed one to consider more correctly an
interaction of the low-energy neutrons with the plastic
scintillator and to convert the ionization losses of different
charged particles into the electron equivalent. The accu-
racy of this simulation is limited by the uncertainty of
the cross-sections of the elastic scattering of the neutrons
with the protons in the scintillators of 2%. This has to be
added to the inaccuracy of GEANT for the efficiency cal-
culation of the whole setup. In ref. [44] a similar setup has
been investigated with GEANT and the results have been
compared to the accurately measured p(γ, π0)p reaction
giving an uncertainty of 3%. Adding these two contribu-
tions quadratically results in 4% for the systematic error
of the overall efficiency of the experimental setup.
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Fig. 7. The angular dependence of the differential cross-section
for γp → π0p in the energy range 480–530MeV. The open
circles are the data from ref. [44], the filled circles are the data
of the present work. The solid, dashed, and dotted lines are
results of the MAID, DMT, and SAID analysis, respectively.

In order to check the functioning of the neutron detec-
tor, data on double-pion photoproduction γp → π0π+n
were selected and analyzed. To this aim, the π0-meson was
reconstructed via the invariant mass of the two decay pho-
tons and then, using the reconstructed momentum of the
neutron, the missing-mass spectrum for the π+-meson was
constructed. Alternatively, the invariant mass of the π0

and neutron gave a prominent peak, the width and the po-
sition of which corresponded to the ∆0(1232)-resonance.
The analysis of the data obtained for the process γp →
π0π+n indicated that it proceeds mainly through excita-
tion of the ∆0(1232)-resonance in our kinematical region
in agreement with the finding of ref. [47]. The investigation
of this process showed that the selection of the neutrons
and determination of their parameters was correct.

The process γp→ γπ+n was detected by counting the
triple coincidences of the emitted photon, the π+-meson,
and the neutron. Coincident pulses from TAPS and FSD
were used as a pre-trigger. This signal was a “stop” for
the tagger focal plane and a “start” for TAPS and TOF
Time Digital Convertors (TDC). Slightly later coincidence
information from the tagger and TOF then determined if
the event was stored or cleared.



120 The European Physical Journal A

t γ
 - tγ

,
t
γ , - t

π
-150

-100
-50

0
50

-20
-10

0
10

20

0

2000

4000

6000

8000

10000

x 10
2

Fig. 8. A typical triple coincidence time spectrum taken after
the kinematical cuts; tγ is defined by the electron ladder in the
tagger, tγ′ is given by TAPS, and tπ by the forward hodoscope.

The main source of spurious correlated contributions
to γp→ γπ+n comes from the γp→ π0π+n reaction. This
background was simulated using the total cross-section
measured at MAMI [48] and was suppressed by using
conservation of energy and momentum. To this end, we
compared in the analysis the invariant variables t, s1 and
t1 with the variables t′, s′1, and t′1 determined from the
measured data by two different methods [49]. The val-
ues of t were determined according to eq. (8) when the
neutron energy was measured by the TOF detector. In
the case of t′ this energy was calculated from the equa-
tions of the energy and momentum conservation and t′ =
f1(Eγ , Eγ′ , θγγ′ , θγπ+ , θγ′π+). The variable t1 was evalu-
ated as function of Eγ , Eγ′ , and θγγ′ . For t

′
1 the energy and

the angle of the final photon were expressed through other
measured variables and t′1 = f2(Eγ , En, θγn, θγπ+ , θπ+n).
In the case of s1 and s′1 we had s1 = f3(Eγ , En, θγn) and
s′1 = f4(Eγ , Eγ′ , θγγ′ , θγπ+ , θγ′π+).

The constraint that (t−t′) < 0.5m2
π, (s1−s′1) < 0.5m2

π,
(t1−t′1) < 0.7m2

π was applied. Such a kinematic cut, which
was chosen on the basis of the simulation, suppressed the
background to the 3% level relative to the γp → γπ+n
process.

Prompt and random coincidence regions were deter-
mined from a two-dimensional triple-coincidence spectrum
(fig. 8) where the time difference between the initial γ and
the final γ′ photons (tγ − tγ′), detected by the tagger and
TAPS, and the difference between the final γ ′ photon and
the π+-meson (tγ′ − tπ+), detected by TAPS and FSD,
are displayed at the horizontal axes. The sharp peak in
this figure corresponds to the triple coincidence of the re-
action under study. The ridge along the (tγ − tγ′) axis
and the plateau are the contributions of random double
coincidences for the initial γ and final γ ′ photons and for
TAPS-FSD, respectively. The yield was calculated by sub-
tracting the numbers of the random coincidences for two
photons and TAPS-FSD with appropriate weights given
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Fig. 9. The missing-mass spectrum of the reactions γp →
γnX taken after applying the kinematical and time cuts and
subtraction of the random background. The solid line is the
experimental spectrum and the dashed line is the result of the
simulation.

by the relative width of the cuts, from the number of the
events under the sharp peak.

A missing-mass spectrum of the reaction γp → γnX,
constructed using the photon and the neutron momenta
measured in this experiment, is shown in fig. 9. This spec-
trum shows a peak at MX = 139.7MeV with a resolution
σ = 20MeV corresponding to the π+-meson. It agrees
well with the simulation results. As seen from this figure,
a clean separation of radiative π+-meson photoproduction
on the proton from the competing background reaction
γp→ π0π+n is obtained.

As result we have identified about 4 × 105 radiative
π+-meson photoproduction events in the kinematic re-
gion: Eγ = 537–817MeV, 1.5m2

π ≤ s1 ≤ 15m2
π, −12m2

π <
t < tmax, 140

◦ ≤ θcm
γγ′ < 180◦.

4.2 Derivation of the polarizability

In order to reduce the influence of the nucleon resonances,
the differential cross-section was integrated over the angles
θcm
γγ′ from 140◦ to 180◦ and ϕb from 0◦ to 360◦.

To increase our confidence that the model dependence
of the result is under control, we limited ourselves to kine-
matic regions where the difference between model-1 and
model-2 did not exceed 3% when (α−β)π+ is constrained
to zero. First, we consider the kinematic region where the
contribution of the pion polarizability is negligible, i.e. the
region 1.5m2

π ≤ s1 < 5m2
π.

In fig. 10, the experimental data for the differential
cross-section, averaged over the full photon beam energy
interval from 537MeV up to 817MeV and over s1 in the
indicated interval, are compared to predictions of model-1
(dashed curve) and model-2 (solid curve). The dotted
curve is the fit of the experimental data in the region of
−10m2

π < t < −2m2
π. As seen from this figure, the theo-

retical curves are very close to the experimental data. This
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Fig. 10. The differential cross-section of the process γp →
γπ+n averaged over the full photon beam energy interval and
over s1 from 1.5m2

π to 5m2
π. The solid and dashed lines are

the predictions of model-1 and model-2, respectively, for (α−
β)π+ = 0. The dotted line is a fit to the experimental data (see
text).

means that the dependence of the differential cross-section
on the square of the four-momentum transfer t which is
basically the kinetic energy of the neutron (see eq. (8)) is
well reproduced by using the mentioned GEANT simula-
tions for the efficiency. On the other hand, there is a small
difference of less than 10% in the absolute overall efficiency
which could be due to a theoretical, an experimental, or
both deviation from the true cross-section. However, since
we are only interested in the change of the curves with
(α − β)π± , we slightly adjusted the experimental cross-
section to the theoretical.

Then we investigated the kinematic region where the
polarizability contribution is biggest. This is the region
5m2

π ≤ s1 < 15m2
π and −12m2

π < t < −2m2
π. In the

range t > −2m2
π the polarizability contribution is small

and also the efficiency of the TOF is not well known here.
Therefore, we have excluded this region.

In the considered region of the phase space, with max-
imum sensitivity of the cross-section to the polarizabil-
ity but small differences between the considered theoret-
ical models, we obtained the cross-section of the process
γp → γπ+n integrated over s1 and t. All events are di-
vided into 12 bins of the initial photon energy. For each
bin i, the cross-section σi is calculated from

σi = Y i/εiN i
γNt, (14)

where Y i is the number of the selected events after back-
ground subtractions, εi the detection efficiency for the
γp→ γπ+n channel, Nt the number of protons per area in
the 11.4 cm of the LH2 target, and N i

γ the number of pho-
tons passing through the target in the same time interval
as for the integration of Y i.

The cross-sections are calculated according to model-1
and model-2 for two different values of (α− β) within the
phase space covered by the experiment. The obtained ex-
perimental cross-sections and their theoretical predictions
for (α − β)π+ = 0 and 14 × 10−4 fm3 are presented in
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Fig. 11. The cross-section of the process γp → γπ+n inte-
grated over s1 and t in the region where the contribution of
the pion polarizability is biggest and the difference between the
predictions of the theoretical models under consideration does
not exceed 3%. The dashed and dashed-dotted lines are pre-
dictions of model-1 and the solid and dotted lines of model-2
for (α− β)π+ = 0 and 14× 10−4 fm3, respectively.
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Fig. 12. The dependence of the cross-section σ for γp→ γπ+n
on (α− β)π+ at Eγ = 653MeV as obtained in the framework
of model-1. The experimental values of the cross-section are
given with their statistical and systematic errors.

fig. 11. The error bars are the quadratic sum of statistical
and systematic errors.

The systematic error is due to the uncertainties of the
time and kinematic cuts (±1% for each cut), the number
of target protons (±1.5%), the photon flux (±2%), and the
detection efficiency calculations (±4%). As a result, we get
the limiting systematic deviation for the cross-section of
±5%. This is equivalent to a rectangular error distribu-
tion with a ±5% limit. The root-mean square error of this
distribution is then σsyst = 5/

√
3% ' 3%.

Comparing these experimental data with predictions
of the models we find values of (α−β)iπ+ and correspond-

ing errors ∆stat(α − β)iπ+ and ∆syst(α − β)iπ+ for each
experimental point i.
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As an example of such a procedure, fig. 12 shows the
experimental value of the cross-section at Eγ = 653MeV
with statistical and systematic errors and the dependence
of the cross-section on (α− β)π+ calculated in the frame-
work of model-1. Comparing these experimental data with
the model predictions, we obtain for this energy bin

(α− β)π+ = 9.03
+3.58(stat)+3.12(syst)
−3.28(stat)−2.89(syst). (15)

This result has slightly asymmetric errors, but making
the approximation that they are symmetrical and taking
their average values, the value of (α−β)π+ is obtained by
averaging over all 12 bins of Eγ as

(α− β)π+ =

∑

i(α− β)iπ+wi
∑

i wi
, (16)

where wi = 1/(∆stat(α− β)iπ+)2.
The statistical error for the averaged value (α − β)π+

is calculated as

∆stat(α− β)π+ =

(

∑

i

wi

)−1/2

. (17)

The systematic errors are correlated for the cross-sections
at the different values of the energy Eγ . They give contri-
butions to the systematic errors for (α− β)iπ+ at different
i having different statistical weights. Therefore, the sys-
tematic error ∆syst(α−β)π+ is determined by calculating
a weighted average as follows:

∆syst(α− β)π+ =

∑

i∆syst(α− β)iπ+wi
∑

i wi
. (18)

Using this procedure separately for each model, we ob-
tain

(α− β)π+ = (12.2± 1.6stat ± 3.3syst)

×10−4 fm3 (model-1), (19)

(α− β)π+ = (11.1± 1.4stat ± 2.8syst)

×10−4 fm3 (model-2). (20)

As indicated above, the dominant systematic error is
caused by the uncertainties in the neutron detector effi-
ciency. However, this is a difficult problem to overcome
because better neutron detectors are hardly possible.

An additional independent analysis [50] of the experi-
mental data was carried out by a constrained χ2 fit [51].
The reaction γp→ γπ+n is identified by 15 quantities for
the momenta of all five participating particles. In this ex-
periment 14 quantities were measured for each event, the
complete 4-momenta of all particle except the pion for
which only the direction angles were measured. Consider-
ing the over-determined situation, a constrained χ2 fit was
employed to determine how well the measured event de-
tection angles (θ, ϕ) agreed with the measured momenta
magnitudes P , and as well to give the optimum (θ, ϕ, P )
values for each event for all five participating particles. To
assure convergence, the variations were done only for the

magnitudes of the final-state momenta. All combinations
of measured particles were tested to see which best sat-
isfy the γp → γπ+n reaction. This method allows us to
find for each event the combination of measured particles
which best fit the γp → γπ+n reaction kinematics. The
P values best fitting (θ, ϕ) correspond to the minimum of
the constructed constrained χ2 functional.

Simulation studies of the constrained fit method
showed that the described reconstruction algorithm based
on the kinematic fit χ2 selection criteria can be success-
fully used for the suppression of the double-pion photopro-
duction background and reconstruction of the γp→ γπ+n
reaction.

A series of seven analyses with χ2 < 4, 5, 6, 7, 8, 9, 10
has been performed. The value for (α−β)π+ stabilizes for
χ2 < 5 and the values for χ2 < 4:

(α− β)π+ = (10.1± 2.6stat ± 3.0syst)

×10−4 fm3 (model-1), (21)

(α− β)π+ = (10.3± 2.3stat ± 2.7syst)

×10−4 fm3 (model-2) (22)

agree very well with the first analysis giving it additional
support. However the statistical accuracy of this method
is less significant and, therefore, we give the result of the
optimized cut analysis (19), (20), averaged for model-1
and model-2:

(α− β)π+ = (11.6± 1.5stat ± 3.0syst ± 0.5mod)

×10−4 fm3. (23)

5 Discussion

The experimental result (23) for the difference (α− β)π+

of the electric and magnetic polarizabilities provides an
important piece of information about the hadronic struc-
ture of the pion as tested with soft external electromag-
netic fields. Moreover, from a theoretical point of view,
there is another reason for the extraordinary interest
in and importance of a precise experimental determina-
tion of the charged-pion polarizabilities. The approximate
SU(2)L × SU(2)R × U(1)V chiral symmetry in the two-
flavor sector of QCD results in a Ward identity which re-
lates Compton scattering on a charged pion, γπ+ → γπ+,
to radiative charged-pion beta decay, π+ → e+νeγ. The
corresponding low-energy theorem was originally derived
by Terentev [52] in the framework of the partially con-
served axial-vector current (PCAC) hypothesis in com-
bination with current algebra. This PCAC prediction is
equivalent to the result obtained using chiral perturba-
tion theory at leading non-trivial order (O(p4)) and can
be written in the form

απ+ = −βπ+ = 2
e2

4π

1

(4πFπ)2µ

l̄6 − l̄5
6

, (24)

where Fπ = 92.4MeV is the pion decay constant and
(l̄6 − l̄5) is a linear combination of scale-independent pa-
rameters of the Gasser and Leutwyler Lagrangian [53]. At



J. Ahrens et al.: Measurement of the π+-meson polarizabilities via the γp→ γπ+n reaction 123

lowest non-trivial order (O(p4)) this difference is related
to the ratio γ = FA/FV of the pion axial-vector form fac-
tor FA and the vector form factor FV of radiative pion
beta decay [53]:

γ =
1

6
(l̄6 − l̄5).

Once this ratio is known, chiral symmetry makes an ab-
solute prediction for the polarizabilities. This situation is
similar to the case of ππ scattering [54], where the s-wave
ππ-scattering lengths are predicted once Fπ has been de-
termined from pion decay. Using the most recent deter-
mination γ = 0.443 ± 0.015 by the PIBETA Collabora-
tion [55] (assuming FV = 0.0259 obtained from the con-
served vector current hypothesis) results in the O(p4) pre-
diction

απ+ = (2.64± 0.09)× 10−4 fm3,

where the estimate of the error is only the one due to the
error of γ and does not include effects from higher orders
in the quark mass expansion. Clearly, there will be correc-
tions to the prediction of eq. (24). The results of a two-loop
analysis (O(p6)) of the charged-pion polarizabilities have
been worked out in ref. [3]1

(α+ β)π+ = (0.3± 0.1)× 10−4 fm3, (25)

(α− β)π+ = (4.4± 1.0)× 10−4 fm3. (26)

First of all, we note that the degeneracy α = −β has
been removed at O(p6). The corresponding corrections
amount to an 11% (22%) change of the O(p4) result for
απ+ (βπ+), indicating a similar rate of convergence as for
the ππ-scattering lengths [53,56]. The effect of the new
low-energy constants appearing at O(p6) on the pion po-
larizability was estimated via resonance saturation by in-
cluding vector- and axial-vector mesons. The contribution
was found to be about 50% of the two-loop result. How-
ever, one has to keep in mind that ref. [3] could not yet
make use of the improved analysis of radiative pion decay
which, in the meantime, has also been evaluated at two-
loop accuracy [57,58]. Taking higher orders in the quark
mass expansion into account, Bijnens and Talavera obtain
(l̄6− l̄5) = 2.98±0.33 [57], which would slightly modify the
leading-order prediction to απ+ = (2.96±0.33)×10−4 fm3

instead of απ+ = (2.7 ± 0.4) × 10−4 fm3 used in ref. [3].
Accordingly, the difference (α−β)π+ of eq. (26) would in-
crease to 4.9×10−4 fm3 instead of 4.4×10−4 fm3, whereas
the sum would remain the same as in eq. (25). A value of
4.9×10−4 fm3 deviates by 2 standard deviations from the
experimental result of eq. (23). Nevertheless, both the pre-
cision measurement of radiative pion beta decay [55] and
of radiative pion photoproduction indicate that further
theoretical and experimental work is needed. In partic-
ular, the analysis of ref. [55] suggests an inadequacy of

1 Reference [3] uses (l̄6− l̄5) = 2.7±0.4 instead of 2.64±0.72
which was obtained in ref. [53] from γ = 0.44 ± 0.12. Cor-
respondingly, this also generates a smaller error in the O(p4)
prediction απ+ = (2.7 ± 0.4) × 10−4 fm3 instead of (2.62 ±
0.71)× 10−4 fm3.

the present V − A description of the radiative beta de-
cay, which would also reflect itself in an inadequacy of the
ChPT description in its present form.

A different approach for obtaining a theoretical pre-
diction for the difference (α− β) is the application of dis-
persion sum rules (DSR). In ref. [5] dispersion relations at
a fixed value of the Mandelstam variable u = µ2 without
subtraction were applied to the helicity amplitude M++

of elastic γπ scattering:

(α− β) =
1

2π2µ

{
∫ ∞

4µ2

ImM++(t
′, u = µ2)dt′

t′

+

∫ ∞

4µ2

ImM++(s
′, u = µ2)ds′

s′ − µ2

}

. (27)

The biggest contribution to this DSR is given by the
strong s-wave ππ interaction in the t channel. This inter-
action can be effectively described by the σ-meson using
a broad Breit-Wigner resonance expression. The param-
eters of such a σ-meson have been determined in ref. [6]
from a fit to the experimental data for the γγ → π0π0

process (see eq. (7)). A saturation of the DSR (27) by the
ρ(770), b1(1235), a1(1260), and a2(1320) mesons in the s
channel and the σ, and f0(980) mesons in the t channel
leads to [6]

ρ a1 b1 a2 f0 σ

(α− β)DSR
π+ = −1.2 + 2.1 + 0.9− 1.4 + 0.4 + 9.5 =

(10.3± 1.9)× 10−4 fm3, (28)

where the error indicated for this value is caused by the
error for the σ-meson parameters. This value of (α−β)π+

is in agreement with the experimental result of eq. (23)
but differs significantly from the ChPT result of eq. (26).
On the other hand, the DSR for (α− β)π0 yields [6]

ρ ω ϕ f0 σ

(α− β)DSR
π0 = −1.79− 11.69− 0.04 + 0.44 + 10.07 =

(−3.01± 2.06)× 10−4 fm3, (29)

which, within the errors, is not in conflict with the two-
loop ChPT predictions απ0 = (−0.35 ± 0.10) × 10−4 fm3

and βπ0 = (1.50 ± 0.20) × 10−4 fm3 [2] and with the ex-
perimental values (α − β)π0 = (−1.6 ± 2.2) × 10−4 fm3

and (−0.6± 1.8)× 10−4 fm3 obtained in refs. [6] and [19],
respectively.

One might ask for explanations of the difference be-
tween ChPT and our experiment without questioning the
validity of ChPT. The most obvious idea is to consider the
“off-shellness” of the initial pion. Clearly, this issue cannot
be addressed consistently as an independent effect [59,60]
and would require a more sophisticated analysis such as,
e.g., a full ChPT calculation at the one-loop level which
is beyond the scope of the present work. However, in or-
der to obtain an estimate of this effect, we have calculated
(α−β)π+ with the help of dispersion relations for a mass of
the initial pion equal to t and found that such a correction
is less than 5%.
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6 Conclusion

A measurement of radiative π+ photoproduction from
the proton (γp → γπ+n) was carried out at the Mainz
tagged photon facility in the kinematic region 537MeV
< Eγ < 817MeV, 140◦ ≤ θcm

γγ′ ≤ 180◦. The difference

of the electric and magnetic π+-meson polarizabilities has
been determined from a comparison of the experimental
data with predictions of two different theoretical models
which included or neglected baryon resonances. In order to
reduce the contribution of the baryon resonances, the dif-
ferential cross-section was integrated over θcm

γγ′ from 140◦

to 180◦ and over ϕ from 0◦ to 360◦. To further reduce the
model dependence, the kinematic region was chosen such
that the difference between the predictions of the two con-
sidered models did not exceed 3% for (α− β)π+ = 0.

The experimental detection efficiency was normalized
by comparing the theoretical predictions with the exper-
imental differential cross-sections in the kinematic region
where the pion polarizability contribution is negligible
(1.5 < s1/m

2
π < 5).

In the region, where the pion polarizability contribu-
tion is substantial (5 < s1/m

2
π < 15, −12 < t/m2

π < −2),
the difference of the electric and magnetic π+-meson po-
larizabilities was determined by the comparison of the
experimental data for the cross-section of radiative pion
photoproduction with the predictions of two theoretical
models under consideration. As a result we have obtained:
(α− β)π+ = (11.6± 1.5stat± 3.0syst± 0.5mod)× 10−4 fm3.
This result is consisted with the result of ref. [10] and
at variance with recent calculations in the framework of
chiral perturbation theory.
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Appendix A.

The contribution of the diagram in fig. 3 for the ∆(1232)
resonance to the amplitude of the process under consider-
ation can be written as

T∆ =
−2e2(ε2q2)g0(s)/mπ

(s1 −m2
π)(s−M2

∆ + iM∆Γ (s))

×ū(p2)q
µ∆µν(p)γ5

[−g1(s)
m

(

kν1 ε̂1 − εν1 k̂1

)

+
g2(s)

m2

(

kν1 (p1ε1)− εν1(p1k1)
)

]

u(p1),

(A.1)

where

∆µν(p) =
(

1/3M2
∆

)

(p̂+M∆)

×
(

2pµpν − 3M2
∆gµν +M2

∆γµγν

+M∆(γµpν − γνpµ)
)

, (A.2)

p = p1 + k1, q = q2 + k2 and Γ is the decay width of the
∆(1232)-resonance.

In accordance with refs. [61,62] the following
parametrization is used:

Γ (s) = Γ0

( |q|
|q∆|

)3
Md√
s

1 +R2|q∆|2
1 +R2|q|2 ,

g0(s) = g0
((

1 +R2|q∆|2
)

/
(

1 +R2|q|2
))1/2

,

|q∆| =
∣

∣q
(

s =M2
∆

)∣

∣,

g1,2(s) = g1,2
((

1 +R2|k∆|2
)

/
(

1 +R2|k|2
))1/2

,

|k∆| =
∣

∣k
(

s =M2
∆

)∣

∣,

M∆ = 1232MeV, Γ0 = 109MeV, R = 5.5GeV−1.

According to ref. [62] the coupling constants are taken
to be g0g1/mπm = 19.78GeV−2 and g0g2/mπm

2 =
−21.2GeV−3.

Since the term at the coupling g2 in eq. (A.1) gives
a major contribution to the E1+ electric quadrupole [61],
we represent the contribution of the D13-resonance as

TD13
=

−2e2(ε2q2)ḡ0(s)/mπ

(s1 −m2
π)(s−M2

D + iMDΓ̄ (s))

× ū(p2)q
µγ5∆̄µν(p)

× (ḡ2(s)/m
2)
[

kν1 (p1ε1)− εν1(p1k1)
]

u(p1). (A.3)

The propagator ∆̄µν(p) is obtained from ∆µν(p) by
replacing the mass M∆ by MD. We use the same
parametrization as for the ∆(1232)-resonance but with
the following values of the mass, width, and coupling con-
stants: MD = 1520MeV, ḡ0ḡ2 = 0.5g0g2, Γ̄0 = Γ0 =
109MeV.

The contribution of the P11(1440)-resonance can be
written as [62]

TP11
=

−2e2(ε2q2)g∗0
(s1 −m2

π)(s−M2
P + iMPΓP (s))

×ū(p2)γ5

(

p̂1 + k̂1 +MP

)

×[(g∗1/2MP )k̂1ε̂1 + (g∗2/M
2
P )

×((p1ε1)k̂1 − (p1k1)ε̂1)]u(p1), (A.4)

where MP is the mass of the P11(1440)-resonance,

ΓP (s) = ΓP0
(s−m2)MP

(M2
P −m2)

√
s
,

and with the following values of mass, width, and cou-
pling constants [62]: MP = 1440MeV, ΓP0 = 200 MeV,
g∗0g

∗
1/2MP = −2.7 GeV−1, and g∗0g

∗
2/M

2
P = −21.3 GeV−2.
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The amplitude of the S11(1535)-resonance is taken as

TS11
=

−g1Sg2S(ε2q2)
(s1 −m2

π)(s−M2
S + iMSΓS(s))

×ū(p2)
[

p̂2 + q̂ +MS

]

γ5ε̂1u(p1), (A.5)

where MS is the mass of the S11(1535)-resonance and

g2
1S =

8πΓS→γpM
3
S

(M2
S −m2)(M2

S +m2 + 4mMS)
,

g2
2S =

8πΓS→πnM
2
S

q(MS)[(MS +m)2 −m2
π]
,

withMS = 1535MeV, ΓS = 150MeV, ΓS→γp = 375MeV,
and ΓS→πn = 75MeV.

However, the considered amplitudes of the nucleon
resonances are not gauge invariant and besides the cal-
culations with them are cumbersome. These problems
are solved by using the method of orthogonal ampli-
tudes [63–65].

Appendix B.

Let us choose the following basis of orthogonal vectors:

K = k1 + k2,

Q = k1 − k2,

P ′ = P − (PK)

K2
K − (PQ)

Q2
Q, (B.1)

Nµ = εµνλσP
′νKλQσ,

where P = p1 + p2 and ε0123 = +1.
Let us write the amplitude of the process as

ū(p2)Tu(p1) = ū(p2)ε
µ
2Tµνε

ν
1u(p1) (B.2)

and expand Tµν in terms of the basis vectors ησµ

Tµν =
∑

σσ′

ησµCσσ′η
σ′
ν . (B.3)

Eight products can be constructed from the vectors ε2, ε1,
K, Q, P ′, and N :

(ε2K), (ε1K), (ε2Q), (ε1Q),

(ε2P
′), (ε1P

′), (ε2N), (ε1N).

To reduce the number of possible combinations, we use
the gauge invariance conditions:

(ε2k2) = (ε1k1) = 0, (B.4)

Tµνk
ν
1 = kµ2Tµν = 0. (B.5)

Then it is evident from (B.5) that

Tµν(K −Q)ν = 0 or TµνK
ν = TµνQ

ν .

If ην = Kν , then

K2 = (KQ) = 0,

and similarly, if ην = Qν , then

(QK) = Q2 = 0.

However, K2 and Q2 do not vanish identically. Therefore,
the products (εiK) and (εiQ) are forbidden and as a con-
sequence, only the following combinations remain:

(ε2P
′)(ε1P

′), (ε2N)(ε1N),

(ε2P
′)(ε1N)± (ε2N)(ε1P

′). (B.6)

It follows from parity conservation that the coefficients of
the first two terms are scalars, and those of the last two
are pseudoscalars.

To consider the Dirac structure of the operator Cσσ′ ,
we construct the following set of orthogonal vectors:

P = (p1 + p2),

L = (p1 − p2),

V = K − (KP )

P 2
P − (KL)

L2
L, (B.7)

Rµ = εµνλσV
νPλLσ.

The quantities P̂ and L̂ are effectively c-numbers by
virtue of the Dirac equation and the commutation rela-
tions. An additional R̂ and R̂V̂ may be eliminated since
they can be expressed through γ5V̂ and γ5.

In conclusion, the gauge-invariant amplitude of the
process γp → γπ+n may be written in the orthogonal
basis as

ū(p2)Tu(p1) =

ū(p2)γ5

{

(ε2P
′)(ε1P

′)

(P ′)2
[T1 + V̂ T2]

+
(ε2N)(ε1N)

N2
[T3 + V̂ T4]

+
(ε2P

′)(ε1N)−(ε2N)(ε1P
′)

√

(P ′)2N2
iγ5[T5+V̂ T6] (B.8)

+
(ε2P

′)(ε1N) + (ε2N)(ε1P
′)

√

(P ′)2N2

×iγ5[T7 + V̂ T8]

}

u(p1).

As a result, the differential cross-section of the process
under consideration is

dσγp→γπ+n

dtds1 dΩcm
γγ

=
1

64π2

(

e2

4π

)2
(s1 −m2

π)

s1(s−m2)2

×
{

− t
(

|T1|2 + |T3|2
)

− V 2P 2
(

|T2|2 + |T4|2
)

(B.9)

+ 2P 2
(

|T5|2 + |T7|2
)

+ 2V 2t
(

|T6|2 + |T8|2
)}

.

An obvious advantage of this method is that the am-
plitude (B.9) is gauge invariant. Moreover, in this case the
amount of calculations is proportional to the number N
of diagrams considered and not to N 2 which is usually the
case in ordinary calculations of the cross-section.
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Appendix C.

In this appendix we present the method of a projection of
amplitudes of any diagram on the scalar amplitudes Ti of
eq. (B.9). With this aim we expand the amplitude for the
diagram under consideration in terms of the full set of the
basis vectors (B.1),

ū(p2)Aµνu(p1) = ū(p2)
∑

σσ′

ησµCσσ′η
σ′

ν u(p1). (C.1)

Taking account of the orthogonality of the vectors, we
obtain the coefficients of the expansion as

ū(p2)Cσσ′u(p1) = ū(p2)
ησµAµνη

σ′ν

(ησ)2(ησ′)2
u(p1). (C.2)

The functions Cσσ′ may depend on the matrices γ5, V̂ ,
and γ5V̂ . In order to determine the scalar amplitudes Ti,
we multiply eq. (C.2) from the left by u(p2) and from
the right by ū(p1) and use the relation u(p)ū(p) = (p̂ +
m)/2m. Then, multiplying the left and the right sides of

the equation by the operator O (O = 1, γ5, V̂ , γ5V̂ ) and
calculating the traces of these expressions, we find a set
of linear equations that determine the Ti of eq. (B.9):

Tr{O(p̂2 +m)Cσσ′(p̂1 +m)} =
1

(ησ)2(ησ′)2
Tr
{

O(p̂2 +m)ησµAµνη
σ′ν(p̂1 +m)

}

.

(C.3)
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